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a b s t r a c t

Accounting for batch effects, especially latent batch effects, in differential expression (DE) analysis is crit-
ical for identifying true biological effects. Single-cell RNA sequencing (scRNA-seq) is a powerful tool for
quantifying cell-to-cell variation in transcript abundance and characterizing cellular dynamics. Although
many scRNA-seq DE analysis methods accommodate known batch variables, their performance has not
been systematically evaluated. Moreover, the challenge of accounting for latent batch variables in
scRNA-seq DE analysis is largely unmet. In contrast, many methods have been developed to account
for batch variables (either known or latent) in other high-dimensional data, especially bulk RNA-seq.
We extensively evaluate eleven methods for batch variables in different scRNA-seq DE analysis scenarios,
with a primary focus on latent batch variables. We demonstrate that for known batch variables, incorpo-
rating them as covariates into a regression model outperformed approaches using batch-corrected
matrix. For latent batches, fixed effects models have inflated FDRs, whereas aggregation-based methods
and mixed effects models have significant power loss. Surrogate variable based methods generally con-
trol the FDR well while achieving good power with small group effects. However, their performance (ex-
cept SVA) deteriorated substantially in scenarios involving large group effects and/or group label
impurity. In these settings, SVA achieves relatively good performance despite occasionally inflated FDR
(up to 0.2). Finally we make following recommendations for scRNA-seq DE analysis: 1) incorporating
known batch variables instead of using batch-corrected data; 2) employing SVA for latent batch correc-
tion and 3) better methods are still needed to fully unleash the power of scRNA-seq.
� 2020 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
53
63

64

65

66

67

68

69

70

71
1. Introduction

Single-cell RNA sequencing (scRNA-seq) brings single-cell level
resolution to the analysis of transcriptomics. The technique has
been applied in many areas, such as novel cell population discov-
ery, cell heterogeneity dissection, and cell lineage construction
[1,2]. There are two main quantification schemes for scRNA-seq:
read count and unique molecular identifier (UMI) count. The UMI
count has the advantage of avoiding application biases introduced
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by sequencing library construction, which can be approximated by
a negative binomial model [3–5]. As with other high-dimensional
data, accounting for the batch effects in an analysis is critical for
revealing the real biological effects [6]. While the batch-effect con-
cern is universal for all scRNA-seq analyses (recently reviewed in
[7]), it is probably more prominent for differential expression
(DE) analysis of scRNA-seq data, because cells from different
experimental groups/conditions are typically captured separately,
and this produces large collections of cells with batch effects (tech-
nical variations) embedded with underlying biological differences
[8,9]. When the batch effects completely overlap with the group
differences, it is difficult to distinguish their individual effects.
With the fall in cost of scRNA-seq, a better design emerged with
multiple batches/replicates for each group [8–10].

Several methods have been proposed to account for known
batch effects in DE analysis in scRNA-seq data by incorporating
lysis of
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Fig. 1. Schematic diagram of the evaluation of different methods accounting for the
batch effects in scRNA-seq DE analysis. Two different batch effects scenarios were
simulated. Eleven major methods with different configurations were compared in
terms of FDR and statistical power to detect the DE genes. We provide comparison
summaries and recommendations.
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batch variables as covariates in a regression model [5,11,12]. Other
approaches have been developed to directly output a batch
corrected matrix for downstream analysis, mostly for visualiza-
tion/clustering (reviewed in [7]). Although several methods (Com-
Bat [13], MNNCorrect [14], zinbwave [15], scMerge [16]) achieved
relative good performance compared to others in a limited com-
parison [7], their performance in DE analysis has not been system-
atically evaluated.

Many methods have been developed to account for the
unknown/latent batch variables for high-throughput platforms,
such as SVA [17,18], RUV [19], dSVA [20], BCconf [21], and Corr-
Conf [22]. However, scRNA-seq platforms, especially droplet-
based platforms [3,4,23], generate shallow transcriptome profiles
(with many zero entries and a low signal-to-noise ratio) for hun-
dreds to thousands of single cells. Given these distinctive charac-
teristics, the effectiveness of the general methods has not been
established for scRNA-seq data. Recently, a few batch-correction
methods have been proposed for DE analysis of scRNA-seq data.
These include aggregation-based methods [24], nested fixed effects
models [10], and nested mixed effects models [9]. The aggregation-
based methods pool all cells from a batch to produce a pseudo-bulk
sample and then analyze the pooled data by using approaches
designed for bulk RNA-seq. Nested fixed-effect methods treat the
batch effects as fixed effects nested within each group and then
test the group effects for each gene. Alternatively, the batch effects
can be modeled in mixed effects models, in which all cells from
each batch share a random effect. Although the nested fixed-
effect models and nested mixed-effect models were designed for
scRNA-seq, they belong to the single-gene based methods, which
ignore potential common information shared among all genes,
which in turn might result in a loss of power.

Most scRNA-seq platforms produce either read count or UMI
count based gene expression matrices. Although a high abundance
of zeroes in the expression matrix is common with both schemes,
we have shown that the UMI count can be modeled by simpler
models. Moreover, the negative binomial model is a good approx-
imation model and zero-inflated models are not needed for UMI
counts [5].

In this study, we evaluated the performance of eleven represen-
tative methods (with various parameter configurations) account-
ing for known/latent batch effects in DE analysis in extensive
simulations in UMI count based scRNA-seq datasets. We compared
the performance of selected methods in an scRNA-seq dataset for
Rh41 cells with multiple batches.
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2. Methods

2.1. Comparison scheme and criteria

A schematic diagram of the comparison is shown in Fig. 1. We
simulated two different batch effects scenarios and considered dif-
ferent numbers of cells as well as impurity of the group labels. FDR,
statistical power, F1-score and area under the curve (AUC) of the
precision-recall curve were used to compare different methods
accounting for batch effects in the DE analysis. For the AUC calcu-
lation, we restricted to the area with precision >0.8 and normalized
its area to 1. The first scenario simulated two groups with three
matched batches, i.e., samples were simultaneously collected for
both groups for each batch. The second scenario also included
two groups, each with three independent batches, i.e., all samples
were collected independently. We further simulated different
magnitudes of group effects and different sample sizes of cells.
Finally, we simulated a group with impurity, i.e., a small portion
of cells within each batch were mislabeled. This scheme repre-
sented the experimental design using fluorescence-activated cell
Please cite this article as: W. Chen, S. Zhang, J. Williams et al., A comparison of
UMI count based single cell RNA sequencing, Computational and Structural Bi
sorting (FACS), in which 95% purity is considered high and accept-
able [25]. The fold change and the total number of cells in each
simulation setting are summarized in Table 1.

2.2. Simulation of matched batches

For matched batches, we started from an scRNA-seq data set for
Rh41 cells from three different batches [26]. After filtering out
genes expressed at only low levels (average UMI count < 0.1 in
any batch), a total of 9831 genes remained. Filtering of genes
expressed at low levels was used only in the data simulation step;
this simplified the model to permit a focus on comparing method
performance with no need for concerns about false positives being
introduced by genes with very low expression levels [11]. Genes
were sorted based on the average gene count, and we selected
approximately 20% of the genes in pairs for which the fold change
between the two genes in the pair was close to a specified fold-
change value. These gene pairs were selected so as to cover the
entire expression spectrum. We randomly sampled 10% to 40% of
the cells from each batch and swapped the expression vectors of
the pre-selected gene pairs. In this way, we simulated the DE of
genes between the selected cells and the remaining cells. In addi-
tion, we used Splatter [27] to simulate data with batch effects in an
experiment whose design was similar to the matched-batch sce-
nario. We used the default setting and provided one batch of
Rh41 cells for parameter estimation. The group probability was
set to 0.25 and 0.75, with three batches per group.

2.3. Simulation of independent batches

For independent batches, we followed the simulation strategy
described by Lun and Marioni [24]. In this scheme, six independent
batches/plates were generated, three for each group. We simulated
the gene count matrix by generating counts from the negative
binomial (NB) distribution. The parameters, such as the mean
and dispersion of each gene and the variance of batch effects (as-
suming a log-normal distribution with zero mean), were estimated
from the Rh41 dataset. Instead of assuming that each gene had the
independent batch variables used by Lun and Marioni [24], we
assumed that all genes shared the same batch variable among cells
in the same batch, although we allowed different scales of batch
effect in different genes by multiplying a different constant by
methods accounting for batch effects in differential expression analysis of
otechnology Journal, https://doi.org/10.1016/j.csbj.2020.03.026
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Table 1
Different simulation settings.

Batches Group effect Total number of cells Impurity level Number of replicates

Matched Small, FC = 1.5 Small, 600 0 50
Matched Small, FC = 1.2 Large, 12,000 0 50
Independent Small, FC = 1.5 Small, 600 0 50
Independent Small, FC = 1.2 Large, 12,000 0 50
Matched Large, FC = 20 Small, 600 0 10
Matched Large, FC = 20 Large, 12,000 0 10
Independent Large, FC = 20 Small, 600 0 10
Independent Large, FC = 20 Large, 12,000 0 10
Matched Large, FC = 25 Small, 600 5% 10
Matched Large, FC = 25 Large, 12,000 5% 10
Splatter Default setting Small, 600 0 50
Splatter Default setting Large, 6000 0 50
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the batch variable for each gene. For each gene, the model can be
summarized as follows:

f ðEðyijkÞÞ ¼ lþ gi þ s � bj ið Þ ð1Þ

where yijk denotes the expression count from sample k in batch j of
group i, l is the overall mean, gi denotes the group effect, bjðiÞ
denotes the batch variable j within group i, s is a gene-specific scal-
ing factor, f represents the link function, and gi is the group effect.
We used the log function as the link function in the negative
binomial-based simulation. Here we have omitted the gene-
specific subscript for simplicity.

We chose the constant s for each gene so that the variance of the
batch effect among six batches was proportional to the estimated
variance of the batch effect of each gene. The number of cells per
batch/plate was 50 in one group and 150 in another group in the
small sample-size scenarios (giving 600 cells in total) and 1000
in one group and 3000 in another group in the large sample-size
scenarios (giving 12,000 cells in total). As in the simulation of
matched batches, 9831 genes were simulated, of which 20% were
DE genes. We excluded simulated data sets for which the batch
variables fully aligned with the group label (e.g., all positive batch
variables were in one group and all negative batch effects in the
other) because it would be difficult to distinguish batch and group
effects.
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2.4. Simulation of group impurity

We simulated the impurity scenario for the matched batches.
To create mislabeling for a specified fraction of cells in each group,
we switched the group label.
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2.5. Evaluated methods

The methods and parameter configurations evaluated are sum-
marized in Table 2 and are briefly described below.
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2.5.1. DE analysis in general
Following the practice of Lun and Marioni [24], we used edgeR

[28] for the DE analysis and included the estimated surrogate vari-
ables for batch effects as the covariates. Overall, edgeR is an effi-
cient DE algorithm that directly uses the UMI count. Except
when using aggregation-based methods, we set prior.df to 0 to
infer independently the dispersion of each gene based on scRNA-
seq data. We evaluated two methods for library size estimation:
the total UMI per cell and the scran [29] inferred library size. For
methods that return a batch corrected matrix, we used the func-
tion f. p value from the R package sva [17,18] to calculate the p-
values based on the corrected matrix.
Please cite this article as: W. Chen, S. Zhang, J. Williams et al., A comparison of
UMI count based single cell RNA sequencing, Computational and Structural Bi
2.5.2. Analysis with known batch variables
The true batch variables were provided to each method assum-

ing known batches. The method batch_scran was used as the refer-
ence for comparison with all other methods.
2.5.3. Methods outputting the batch corrected matrix
ComBat [13] uses a linear model to model the normalized gene

expression matrix, which includes the variables of interest, such as
the group variable, and the batch effects as covariates. Each gene
has its own batch specific mean parameter as well as a batch speci-
fic variance parameter. Once these parameters are estimated for
each gene, an empirical Bayesian adjustment across all genes are
used to provide a more stable estimation of these gene specific
parameters. The output of the method is a batch corrected matrix.

MNNCorrect [14] assumes similar cells in two batches can be
mapped using the mutual nearest neighbors, then their differences
in the gene expression vector space representing the batch effect
and can be corrected by keeping one batch as a reference and sub-
tracting the difference from the other batch. It assumes the batch
variable is almost orthogonal to the group variable. The output is
a batch corrected expression matrix. Note that the group informa-
tion is not used in MNNCorrect, different from later surrogate vari-
able based methods.

The method scMerge [16] identifies cell clusters within each
batch and maps cell clusters of different batches using mutual
nearest clusters to identify shared ‘‘cell type” across batches. Then
these ‘‘cell type” labels can be included in the RUV model [19] as
covariates of interest and other latent batch information estimated
from the RUV model is subtracted from the expression matrix. This
is called the unsupervised version because the group information
or the ‘‘cell type” information is not supplied to the method. For
the supervised version, the group information or the ‘‘cell type”
information is directly supplied. In this case, it would be similar
as an application of the RUV method to produce a batch corrected
matrix. The package scMerge also provides a method to identify
stably expressed genes across different batches.

The method zinbwave [15] allows modeling of the gene expres-
sion count using both gene specific and cell specific variables. The
method uses a zero inflated negative binomial model to account for
potential excess of zeros. The gene or cell specific variables can be
either known or latent. It can optionally output a normalized
expression matrix. Besides, it can also estimate the latent batch
variables representing the existing but uncaptured variation from
known variables of interest. Because in this study we focused on
UMI counts, which has been shown that the negative binomial dis-
tribution is adequate to model their distribution [5], we set the
parameter zeroinflation to false.

Note that MNNCorrect and scMerge can only be applied in the
matched batch scenario because for independent batches, each
methods accounting for batch effects in differential expression analysis of
otechnology Journal, https://doi.org/10.1016/j.csbj.2020.03.026
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Table 2
Evaluated methods, package versions, and parameter configurations.

Methods Version Batch
type

Description

scImpute 0.0.9 – Cluster is set to 6 to reflect 6 batches. Impute threshold is default 0.5
batch, batch_scran edgeR:

3.23.5scran: 1.10.2
known Include the batches directly in the DE analysis using edgeR. ‘‘_scran” means scran is used to estimate the

size factor, otherwise the total UMI count is used.
ComBat 3.34.0 known

matched
Use the default parametric adjustments. The input is the log transformed matrix. f.pvalue from package sva
is used to calculate the p-values based on the corrected matrix. This can only be applied on known
matched batches.

MNNCorrect 1.2.4 known
matched

Correct all the genes based on the 2,000 high variable genes selected using the function modelGeneVar.

scMerge 1.2.0 known
matched

Unsupervised gene selection is used by choosing the top 2,000 stably expressed genes using the function
scSEGIndex. kmeansK is set to two clusters per batch. For the supervised version, the group information is
used as the ‘‘cell type”, this is similar as using the RUV method.

zinbwave 1.8.0 latent zinbwave_normalized fits a default intercept model and then uses the corrected matrix for DE analsyis.
zinbwave fits a model with the group variable as the covariates and uses the extracted 20 components as
surrogate batch variables. We set the zero inflation to false so only negative binomial distribution is used.

CorrConf 2.1 latent The name has the pattern CorrConf<_k20><_scran><_ns>, ‘‘_k20” means setting the number of surrogate
variables to 20, otherwise is automatically estimated by ChooseK. ‘‘_scran” means scran is used to estimate
the size factor, otherwise the total UMI count is used. ‘‘_ns” means using the original count matrix without
summing, otherwise 20 cells are summed into a ‘‘summed cell” to form the new count matrix.

cate 1.0.4 latent Similar method name pattern as CorrConf. When the number of surrogate variables is not specified, CBCV
from CorrConf is used to automatically estimate the number used.

dSVA 1.0 latent Similar method name pattern as CorrConf. When the number of surrogate variables is not specified, it is
automatically estimated.

SVA 3.29.1 latent Similar method name as CorrConf. When the number of surrogate variables is not specified, it is
automatically estimated.

pseudo_bulk 3.23.5 latent Aggregate all cell counts within each batch to generate a pseudo bulk sample. Then perform the DE
analysis using quasi-likelihood (QL) based method using edgeR.

fixed_effect 3.23.5 latent The batch effects are nested within each group using the formula in edgeR � group + group:batch. We set
the contrast to contr.sum and test whether group effect is 0. The likelihood based test is used. Scran is used
to estimate the size factor.

mixed model SAS 9.4 latent The counts are modeled using negative binomial distribution, and the batch effects are modeled using a
random Gaussian distribution in SAS. Four different combinations of test options are used: laplace_ChiSq,
quad_ChiSq, PL_default_F, PL_KR_F. laplace_ChiSq is shown as mixed_model in the results. laplace and
quad means the approach uses Laplace approximation and adaptive quadrature, respectively, when using
the maximum likelihood estimation. PL means pseudo-likelihood estimation, default_F means the default
F test, KR_F means the F test with the Kenward and Roger adjustment on the degree of freedom.
quad_ChiSq and PL_KR_F failed to finish on several data sets, and we use the rest for FDR and power
estimation.
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batch contains only a single group label / ‘‘cell type”. ComBat can-
not run on independent batches because the batch variable is con-
founded with the group variable.

2.5.4. Aggregation based methods
Lun and Marioni proposed to aggregate/sum counts from all

cells in each batch into one pseudo-bulk sample [24]. They then
used quasi-likelihood for the test, as in a bulk RNA-seq analysis.
We have called this method pseudo_bulk.

2.5.5. Fixed effects model
This method was proposed by Cole et al. [10]. We ignored the

subscript that specified the gene. For each gene, the batches were
nested within each group and a fixed effects model similar to Eq.
(1) was used, with the scale parameter being absorbed into the
batch variables:

gðEðyijkÞÞ ¼ lþ gi þ bj ið Þ ð2Þ
where yijk denotes the expression count from sample k in batch j of
group i, l is the overall mean, gi denotes the group effect, and bjðiÞ
denotes the nested batch effect jwithin group i. The null hypothesis
is gi ¼ 0; i ¼ 1; ::;G, where G is the total number of groups.

To make Eq. (2) identifiable, the following constraints were
added:
XG

i¼1
gi ¼ 0 ð3Þ

XBi

j¼1
bjðiÞ ¼ 0; i ¼ 1; � � � ;G ð4Þ
330

Please cite this article as: W. Chen, S. Zhang, J. Williams et al., A comparison of
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where Bi is the number of batches within group i. The constraint (4)
implied that the average batch effects were the same across groups.

It can be shown that the fixed effects model is equivalent to
putting one variable for each batch in the model and testing
whether the average effects across batches of each group are the
same. Specifically, this model can be written as:

gðEðyijkÞÞ ¼ pj ið Þ ð5Þ
This model has the same number of free parameters as in Eq.

(2), with pjðiÞ ¼ lþ gi þ bjðiÞ. The null hypothesis is equivalent to
1
B1

PB1
j¼1pjð1Þ ¼ 1

Bi

PBi
j¼1pjðiÞ; i ¼ 2; ::;G. With the above null hypothesis,

it is clear that that when there is no group effect but the average
batch effects are different, the null hypothesis will still be rejected,
which results in inflated type I error.

The model for the matched batches can be represented as
follows:

gðEðyijkÞÞ ¼ lþ gi þ bj ð6Þ

with the constraints
XG

i¼1
gi ¼ 0 ð7Þ

XB

j¼1
bj ¼ 0 ð8Þ

where bj is the batch effect for each batch j; j ¼ 1; � � � ;B: Thus, the
nested fixed effects model includes the matched-batch model as a
reduced model. This explains the good performance of this nested
model when applied to the data for simulated matched batches.
methods accounting for batch effects in differential expression analysis of
otechnology Journal, https://doi.org/10.1016/j.csbj.2020.03.026
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However, when the batches are independent and few, the assump-
tion of the same average batch effect among groups might be vio-
lated, leading to an increase in false positives, as shown in the
simulations.
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2.5.6. Mixed effects model
The model is similar to that in Eq. (2). The difference is that it

assumes the batch effect bjðiÞ to be a random variable, and these
are usually assumed to follow a normal distribution. Therefore,
there is no hard assumption that the average batch effect in the
given data is the same across groups, even though, on the popula-
tion level (when the number of batches is infinite), we assume the
average to be the same. We used a negative binomial distribution
for the count and fitted the mixed model using SAS PROC GLIM-
MIX. We evaluated different options in the fitting, including max-
imum likelihood estimation using Laplace approximation or
adaptive quadrature, and pseudo-likelihood estimation with the
default F test or the F test with the Kenward and Roger adjustment
on the degree of freedom. Because of the high computational com-
plexity, mixed effects models were executed only on 10 replicates
in small sample-size scenarios. Moreover, a fraction of the data set
failed to converge and was excluded from the FDR/power
calculations.
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2.5.7. Surrogate variable based methods
These methods aim to estimate the surrogate variables based on

the data matrix with high-dimensional features (gene expression
in this application) to uncover the unobserved batch effects. The
primary assumption is that only a small set of genes are differen-
tially expressed between distinct groups (i.e., there is a sparsity
of DE genes). In this study, we evaluated SVA [17,18], cate [30],
dSVA [20], and CorrConf [22], which were either widely adopted
approaches or recently published methods that were claimed to
have good performance. Briefly, SVA iteratively estimates the prob-
ability of each gene being affected only by the batch effect and not
by the group effect and then performs a weighted singular value
decomposition on the data matrix to estimate the surrogate vari-
ables. The cate method first estimates the coefficients/loadings of
batch effects by using a factor analysis and then estimates the
batch variables by using a robust regression under the sparse
group-effect assumption. dSVA first performs singular value
decomposition on the residual matrix after regressing out the vari-
ables of interest and then estimates the batch variables by using a
regression that has connections to the restricted least squares
method. CorrConf is an extension of the method BCconf [21], which
corrects a bias in the cate method, especially when the confound-
ing batch effect is weak. Because CorrConf can also be applied to
independent samples and estimates the number of surrogate vari-
ables faster than does BCconf, only CorrConf was included in the
comparison.

Because all surrogate variable based methods implicitly or
explicitly assume a Gaussian distribution for the data matrix, we
transformed the gene expression data matrix before applying these
methods. Specifically, we used log2 TPM þ 0:1ð Þ as the input to dif-
ferent methods, where TPM represents transcripts (UMI count) per
million. Finally, in the DE analysis, the estimated surrogate vari-
ables were used as covariates for the batch effects, with edgeR
being used with the likelihood ratio test. For the simulated data
with a large number of cells (approximately 2000) in each batch,
we sorted cells by total UMI within each batch and summed 20
cells into a new aggregated pseudo-cell. Empirical evidence indi-
cated that the pseudo-cells achieved similar or better efficiency
in the surrogate variable estimation and similar or improved DE
analysis performance in simulations, as compared to the raw
cell-count matrix (see Results). The library sizes were estimated
Please cite this article as: W. Chen, S. Zhang, J. Williams et al., A comparison of
UMI count based single cell RNA sequencing, Computational and Structural Bi
using scran or the raw total UMI. The number of surrogate vari-
ables included in the DE analysis was either estimated by each
method or fixed at 20.

When the number of cells is large (>10,000), generating pseudo-
cells by aggregating a predefined number of cells (20 in our evalu-
ation) can both improve FDR control when using surrogate variable
based methods and substantially reduce the computational burden
(see Results section for details). Although the exact reason for the
improved performance is not known, we hypothesize that cell
aggregation reduces the data sparsity, which improves the fit to
the normal distribution, a common assumption for surrogate vari-
able based methods [17,18,20–22,30].
2.6. Data analysis in Rh41 cells

The protocol described by Chen et al. [5] was followed to sort
Rh41 cells into two groups by FACS using the CD44 cell-surface
marker. These groups were designated CD44low and CD44high. The
sorting and scRNA-seq experiments were performed on three inde-
pendent cultures of Rh41 cells and generated three matched/-
paired batches (giving six scRNA-seq datasets in total). For
scRNA-seq data, we applied a loose threshold to filter genes: at
least 10 cells with nonzero values out of >20,000 cells in the data.
We also generated bulk RNA-seq datasets (independent of the
scRNA-seq datasets) by using the same sorting protocol. Two eval-
uation schemes were used. In the first evaluation, we applied dif-
ferent methods to the scRNA-seq data from two batches,
assuming unknown batch information, and used the DE genes
identified in the remaining batch for validation. As both the
CD44low and CD44high populations used for validation were derived
from a single batch, no batch correction was needed for DE analy-
sis. In the second evaluation, we performed DE analysis on all three
batches, again assuming unknown batch information, and com-
pared the results to those for the DE genes derived from the bulk
RNA-seq analysis (using edgeR with TMM normalization [31] and
with the paired information). We evaluated the power to recover
DE genes detected in bulk RNA-seq analysis with FDR cutoffs of
0.05 and 0.1.
3. Results

3.1. Representative configurations of evaluated methods

Among all evaluated parameter configurations (Figs. S1–S8), we
identified a good representative configuration for each method for
comparison purposes. We found that scran-inferred size factors
reduced the FDR in most cases, especially for independent batches.
Therefore, all the representative configurations used scran except
for the pseudo_bulk and mixed effects models implemented in
SAS, and those methods output the batch corrected matrix. Even
though scran estimation of the size factor is generally beneficial
for DE analysis, we have identified certain scenarios in which scran
normalization leads to an inflated FDR, which suggests that more
improvements are needed for proper size-factor estimation, espe-
cially in the context of batch effect estimation.

Because of the high abundance of zeros in scRNA-seq data, it is
often assumed that imputation will help overcome this drawback
and provide more transcriptomic information. Consequently, we
evaluated a hypothesis that adding an imputation step before
batch effects removal would further improve DE analysis. To this
end, we imputed the count matrix by using scImpute [32] then
performed DE analysis with the true batch information. We com-
pared the results of the analysis with and without imputation. Sur-
prisingly, our comparison revealed that, instead of improving
performance, scImpute either reduced the power or inflated the
methods accounting for batch effects in differential expression analysis of
otechnology Journal, https://doi.org/10.1016/j.csbj.2020.03.026
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type I error (Tables S1–S5). Consequently, we evaluated all meth-
ods by using the raw counts.

For surrogate variable based methods, there were substantial
differences in the number of surrogate variables reported by the
individual methods. Moreover, using these automatically inferred
surrogate variables often resulted in poor performance (especially
in the small sample-size scenarios). To provide a meaningful com-
parison, we reported the performance by using 20 surrogate vari-
ables for all surrogate variable based methods; this empirically
achieved a good tradeoff between controlling the FDR and main-
taining the power. For large sample-size scenarios, using surrogate
variable based methods with the raw data was computationally
expensive and yielded no significant improvement in performance
when compared to the pseudo-cell strategy (Figs. S1–S8). There-
fore, the pseudo-cell aggregated data was used for all representa-
tive surrogate variable methods. Table 3 summarized the average
FDR and relative power of these representative methods with dif-
ferent simulation settings. The average F1-score and AUC were
reported in Table S1–S5.
496

497

498

499
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3.2. Methods with known batches

Fig. 2 shows the results of small group effects using large num-
ber of cells. Compared to batch_scran which accounts for the
batches in a regression model, methods that output batch cor-
rected matrix (ComBat, MNNCorrect, scMerge, scMerge, scMerge_-
Table 3
FDR and relative power of representative methods.

Methods Small group effect

Matched Independent Splatter

S L S L S

FDR
batch_scran 0.041 0.042 0.042 0.043 0.064
scImpute_batch_scran 0.044 0.049 0.187 0.132 0.525

ComBat 0.107 0.078 NA NA 0.071

MNNCorrect 0.034 0.048 NA NA 0.042
scMerge 0.306 0.453 NA NA 0.795
zinbwave_normalized 0.355 0.650 0.205 0.457 0.046

zinbwave 0.324 0.738 0.236 0.526 0.064

CorrConf_k20_scran 0.063 0.045 0.046 0.042 0.074

cate_k20_scran 0.097 0.061 0.068 0.058 0.090
dSVA_k20_scran 0.095 0.057 0.064 0.057 0.072
SVA_k20_scran 0.044 0.051 0.042 0.075 0.069

pseudo_bulk 0.000 0.000 0.033 0.001 0.007
fixed_effect 0.050 0.042 0.243 0.503 0.088
mixed_effect 0.056 NA 0.085 NA 0.028

Relative power
batch_scran 1.000 1.000 1.000 1.000 1.000
scImpute_batch_scran 0.842 0.969 1.161 0.992 1.834

ComBat 0.964 0.940 NA NA 0.996
MNNCorrect 0.641 0.814 NA NA 0.998

scMerge 0.001 0.090 NA NA 0.007

zinbwave_normalized 1.073 0.718 1.004 0.683 1.022
zinbwave 1.182 0.980 1.138 1.003 1.007
CorrConf_k20_scran 1.012 0.950 0.967 0.987 0.973
cate_k20_scran 1.079 0.920 1.046 0.997 1.004
dSVA_k20_scran 1.085 0.995 1.045 1.001 0.996

SVA_k20_scran 0.897 0.956 0.723 0.998 0.906

pseudo_bulk 0.000 0.000 0.317 0.069 0.483
fixed_effect 0.973 1.010 1.108 0.995 1.025
mixed_effect 0.694 NA 0.956 NA 0.743

S: small number of cells; L: large number of cells; NA: not computed.
For FDR, regular font indicates FDR � 0.08, underlined font indicates 0.08 < FDR � 0.2, b
For power, regular font indicates relative power �0.9, underlined font indicates relative

Please cite this article as: W. Chen, S. Zhang, J. Williams et al., A comparison of
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supervised, zinbwave_normalized) either had inflated FDR, or
reduced power (Fig. 2a and c). Similar suboptimal performance
can be seen using F1-score or the AUC of the precision-recall curve
(Fig. 2e and g). This observation is expected because the authors of
these packages cautioned potential suboptimal performance in DE
analysis (e.g., MNNCorrect) or recommended to use the corrected
matrix for visualization and clustering analysis (e.g., zinbwave),
as evaluated by Tran et al. [7]. Moreover, even with knowledge
of the true batch variable, these methods (ComBat, MNNCorrect,
scMerge, scMerge_supervised) had either similar or often worse
performance than surrogate methods that estimated the batch
variable, such as SVA_k20_scran.

The results of small sample size (Figs. S9–S11) show similar pat-
terns as that of large sample size. Due to the requirement of true
batch information (ComBat, MNNCorrect, scMerge) and their infe-
rior performance (ComBat, MNNCorrect, scMerge and zinbwave),
we did not focus on these methods in the analysis for latent
batches.
3.3. Evaluation of latent batches of large sample size

3.3.1. Small group effects
In matched-batch scenarios (Fig. 2a, c, e and g), all methods

achieved good FDR control (Fig. 2a). The pseudo_bulk method
showed substantial power loss, whereas other methods achieved
power comparable to batch_scran (Fig. 2c). Similarly, the pseudo_-
Large group
effect

Matched Independent Impure

L S L S L S L

0.054 0.047 0.073 0.039 0.044 0.045 0.073
0.511 0.324 NA 0.216 NA 0.204 NA

0.062 0.117 0.119 NA NA 0.142 0.142
0.048 0.502 0.540 NA NA 0.497 0.524
NA 0.576 0.606 NA NA 0.506 0.825
0.040 0.357 0.716 0.102 0.339 0.502 0.760

0.070 0.316 0.818 0.169 0.615 0.419 0.842

0.048 0.108 0.119 0.062 0.088 0.122 0.051

0.049 0.094 0.154 0.054 0.057 0.365 0.112
0.047 0.108 0.152 0.058 0.121 0.237 0.060
0.044 0.049 0.104 0.039 0.125 0.048 0.157
0.000 0.002 0.000 0.014 0.069 0.003 0.000
0.059 0.055 0.069 0.155 0.422 0.056 0.072

NA NA NA NA NA NA NA

1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.182 1.000 NA 1.000 NA 1.000 NA

0.968 1.000 1.000 NA NA 1.000 1.000
0.966 1.000 1.000 0.000 NA 1.000 1.000

NA 1.000 1.000 0.000 NA 1.000 0.873
0.754 1.000 1.000 1.000 1.000 1.000 1.000
1.003 1.000 1.000 1.000 1.000 1.000 1.000
0.981 0.948 0.987 0.770 1.000 0.013 0.404
0.997 1.000 1.000 1.000 1.000 0.021 1.000
0.996 1.000 0.999 0.959 1.000 0.014 0.874
0.972 1.000 1.000 1.000 1.000 1.000 1.000

0.404 1.000 1.000 0.998 0.998 1.000 1.000
1.001 1.000 1.000 1.000 1.000 1.000 1.000
NA NA NA NA NA NA NA

old font indicates FDR > 0.2
power �0.8 but <0.9, bold font indicates relative power <0.8.
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Fig. 2. FDR and power from the simulation of the large sample size and small group effects. a) FDR of matched batches; b) power of matched batches; c) FDR of independent
batches; d) power of independent batches; e) F1-score of matched batches; f) F1-score of matched batches; g) AUC of the Precision-Recall curve of matched batches of
independent batches; h) AUC of the Precision-Recall curve of matched batches of independent batches. The FDR, power, F1-score, and AUC of each method is plotted as a
boxplot based on replications. For the FDR, the redline is the nominal threshold of 0.05. A large deviation from this line indicates either inflation or deflation of the FDR.
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Fig. 3. FDR and power from the simulation of the large sample size and large group effects. a) FDR of matched batches; b) power of matched batches; c) FDR of independent
batches; d) power of independent batches; e) F1-score of matched batches; f) F1-score of matched batches; g) AUC of the Precision-Recall curve of matched batches of
independent batches; h) AUC of the Precision-Recall curve of matched batches of independent batches. The FDR, power, F1-score, and AUC of each method is plotted as a
boxplot based on replications. For the FDR, the redline is the nominal threshold of 0.05. A large deviation from this line indicates either inflation or deflation of the FDR.
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Fig. 4. FDR (a), power (b), F1-score (c) and AUC of the Precision-Recall curve (d)
from the simulation of the large sample size and impure group labels with matched
batches. The FDR, power, F1-score, and AUC of each method is plotted as a boxplot
based on replications. For the FDR, the redline is the nominal threshold of 0.05. A
large deviation from this line indicates either inflation or deflation of the FDR.
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bulk method showed the worst performance in terms of the F1-
score (Fig. 2e). However, it only had a minor loss in AUC
(Fig. 2g), which is consistent with the observation from Lun et al.
[24]. This observation suggested that although the peudo_bulk
approach produced a largely correct gene rank, it is over-
conservative in measuring the significance. The Splatter-based
simulation yielded similar results (Figs. S7 and S8).

In scenarios with independent batches, the surrogate variable
based methods (CorrConf, cate, dSVA, and SVA) achieved good per-
formance in FDR control, power, F1-score and AUC although SVA
occasionally showed inflated FDR (Fig. 2b, d, f and h). Conversely,
the fixed effects model showed FDR inflation (Fig. 2b), as well as
a clear loss in F1-score and AUC (Fig. 2f and i). The pseudo_bulk
method again suffers from substantial loss in power (Fig. 2d),
F1-score (Fig. 2f) and a lower AUC (Fig. 2h).

3.3.2. Large group effects
When the group effects are large, all the evaluated methods

accounting for latent batches achieved near-perfect power in
recovering DE genes in the matched-batch scenarios. Although
the surrogate methods showed moderate FDR inflation (Fig. 3a
and c), they still achieved close to optimal performance in terms
of F1-score and AUC. A similar trend was found in the
independent-batch scenario (Fig. 3b and d), with the following
exceptions: fixed effects models showed severe FDR inflation,
whereas one surrogate method (cate) controlled the FDR properly.

3.3.3. Group impurity
This scenario approximated a DE analysis in which the group

label was not 100% accurate. An incorrect group label can result
from impurity in a FACS experiment or from incorrect group
assignment in a clustering analysis, which are common occur-
rences in real data analysis. Fig. 4 shows the FDR and power when
approximately 5% of the cells in each batch are incorrectly labeled.
We evaluated the matched-batch scenario. The aggregation
method (pseudo_bulk) and the fixed effects method performed
well in this setting. CorrConf and dSVA showed substantially
reduced power, because both of these methods captured the true
group label information in the estimated surrogate variables,
which subsequently resulted in a major reduction in power to
recover DE genes after (improperly) accounting for surrogate vari-
ables (Fig. 4). The cate method maintained the power well, perhaps
because it uses robust regression when estimating the batch infor-
mation. However, in applications with the raw data (without
aggregating pseudo-cells), the power of CorrConf, cate, and dSVA
was close to 0 (Fig. S5), which indicated that the true group labels
were almost perfectly captured, although it should be noted that
the annotated (impure) group information was included in the
inference of the surrogate variables. Conversely, by selecting genes
that were probably not differentially expressed between groups,
SVA (one of the surrogate variable methods) remained unaffected
by the mislabeling, showing little change in terms of FDR control
and detection power.

3.4. Evaluation results of latent batches in small sample-size scenarios

The results with small sample sizes were generally consistent
with those with large sample sizes. Therefore, we focused on
results specific to the simulation of a small number of cells.

3.4.1. Small group effects
The results for matched batches and independent batches are

shown in Fig. S9. Mixed effects models were included because
the computational burden was manageable. The mixed effects
models showed loss of power, especially for the matched batches
and in Splatter-based simulations (Fig. S7). For other methods,
Please cite this article as: W. Chen, S. Zhang, J. Williams et al., A comparison of
UMI count based single cell RNA sequencing, Computational and Structural Bi
the results were similar to those obtained using large numbers of
cells, except that the FDR was moderately inflated for several
surrogate based methods. This inflation might have been caused
methods accounting for batch effects in differential expression analysis of
otechnology Journal, https://doi.org/10.1016/j.csbj.2020.03.026
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by a less accurate estimation of the batches with a small sample
size.

Our analysis revealed that, for individual genes, certain mixed
effects models (e.g., quad_ChiSq) can have an inflated FDR, espe-
cially in scenarios with independent batches. This might be caused
by the large number of batches required by these methods in order
for them to estimate accurately the batch effects based on a single
gene. Our simulation, which approximated practical scRNA-seq
data, had only three batches per condition. The observed FDR infla-
tion was consistent with the results of McNeish et al. [33].

3.4.2. Large group effects
Results for matched batches and independent batches are

shown in Fig. S10. By including those DE genes in the surrogate
variable inference, CorrConf and dSVA lost power with indepen-
dent batches, indicating that the inferred surrogate variables cap-
tured both the batch and the group information to some extent.
SVA and cate seems to be robust in this scenario, achieving near-
optimal F1-score and AUC.

3.4.3. Group impurity
Similar to the results for large sample-size scenarios, all surro-

gate variable based methods except SVA showed essentially zero
power, indicating perfect capture of the true group information
in the estimated surrogate variables (Fig. S11).

3.5. Simulation result summary

For known batch information, incorporating the batch informa-
tion as covariates in a regression model outperformed approaches
working on the batch corrected matrix. Among methods designed
for latent batch correction, the surrogate variable based methods,
such as SVA_k20_scran, achieved a relatively good balance
between FDR control (which was slightly inflated in certain scenar-
ios) and good power in scenarios with small group effects. Corr-
Conf and dSVA exhibited power loss in scenarios with large
group effects. Moreover, CorrConf, cate, and dSVA may have sub-
stantial power loss with group impurity. These are potentially
due to the capture of the group information in the estimated sur-
Table 4
Summary of evaluated methods.

Methods Advantage Limitation

ComBat, MNNCorrect,
scMerge

Good for combining data sets from
different sources for visualization and
clustering

It is suboptim
batch correcte
analysis

zinbwave Useful for modeling non-UMI based
scRNA-seq

Large inflated
power in DE a
latent batches

CorrConf Good control of FDR and high power when
the group effects are small

Inflated FDR o
when the gro
large or the g

cate Good or slightly inflated FDR and high
power when the group effects are small

Inflated FDR o
when the gro
large or the g

dSVA Good or slightly inflated FDR and high
power when the group effects are small

Inflated FDR o
when the gro
large or the g

SVA Good control of FDR and high power when
the group effects are small; it is also little
affected by the group label purity

Occasionally n

pseudo_bulk Superfast, easy to apply Low power
fixed_effect fast Need to assum

batch effects a
between grou

mixed_effect Can have higher power than pseudo bulk Very slow for
cells, and the

Please cite this article as: W. Chen, S. Zhang, J. Williams et al., A comparison of
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rogate variables. By focusing on genes likely not differentially
expressed (among groups), SVA was robust to this concern,
although it could have a moderately inflated FDR. The pseudo_bulk
aggregation method was usually over-conservative with respect to
FDR control, resulting in substantial power loss with relatively
small group effects. The fixed effects model worked well when
the assumption (e.g., that the batch effects were the same for
two groups) was satisfied; otherwise, it could result in a highly
inflated FDR. The mixed effects model alleviated the problem of
inflated FDR in the fixed effects model but also lost power, espe-
cially with matched batches.

Recommendations: due to the robustness of SVA under differ-
ent scenarios, we recommend SVA for adjusting for latent batch
effects. When users are confident that the group information is
highly accurate, cate is also a good candidate for adjusting for
latent batch effects. More details about the advantages, limitations,
and recommendations are summarized in Table 4.

The FDR, Power, F1-score and AUC plots for all configurations
among the evaluated approaches are summarized in Figs. S1–S4
and Tables S1–S3.
3.6. DE analysis of CD44high and CD44low subpopulations of Rh41 cells

We applied the methods to a dataset derived from three batches
of Rh41 cells sorted into CD44high and CD44low subpopulations.
First, for each method, we compared the DE genes detected in
two batches of data with the DE genes detected in the third batch
(Table 5). In this setting, batch_scran (with true batch information
provided) detected the most DE genes (10090 with 7711 confirmed
in the validation set, F1 score = 0.776), followed by SVA_scran
(9904, with 7432 matched, F1 score = 0.755). SVA_scran is also
accurate in this setting, with a precision (0.750) approaching that
of the batch_scran (0.764). In contrast, CorrConf_scran (3260, with
2320 matched, F1 score = 0.356) and dSVA_scran (3139, with 2430
matched, F1 score = 0.376) detected substantially fewer DE genes,
probably as a result of impurity of the sorted populations [26].
Although the aggregation method (pseudo_bulk) has higher preci-
sion (0.938) when compared to other approaches, it detects far
fewer DE genes (403, with 378 matched, F1 score = 0.074), which
Recommend application

al to use the
d matrix for DE

Clustering, visualization of data from different
sources/batches

FDR or reduced
nalysis with

DE analysis for non-UMI based scRNA-seq with no need for
latent batch correction

r reduced power
up effects are
roup is impure

DE analysis for moderate effects or the group information is
highly accurate. Can be used together with SVA for a robust
check

r reduced power
up effects are
roup is impure

DE analysis when the group information is highly accurate.
Can be used together with SVA for a robust check

r reduced power
up effects are
roup is impure

DE analysis for moderate effects or the group information is
highly accurate. Can be used together with SVA for a robust
check

ot very stable Good candidate for DE analysis. Can be used together with
cate/CorrConf /dSVA for a robust check

Good for identifying strong DE genes
e the average
re similar
ps

DE analysis when we are sure the average batch effects per
group are similar, such as in a paired/blocked design

a large number of
power is low

When the cell number per batch is small (e.g., h1 0 0) and the
number of batches is large (e.g., �5) and a mixed model is
strongly preferred because of other modeling aspects.

methods accounting for batch effects in differential expression analysis of
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Table 5
Comparison on real data with two batches as discovery and one batch as validation. TPM � 1 is applied to the single-cell results.

Methods DECount TPCount Precision Recall F1 Score

batch_scran 10,090 7711 0.764 0.788 0.776
pseudo_bulk 403 378 0.938 0.039 0.074
CorrConf_scran 3260 2320 0.712 0.237 0.356
cate_scran 7843 5604 0.715 0.573 0.636
dSVA_scran 3139 2430 0.774 0.248 0.376
SVA_scran 9904 7432 0.750 0.759 0.755

# of DE genes in validation set: 9788.
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is consistent with the power loss noted in the simulations. More-
over, all DE genes reported by the aggregation method (pseudo_-
bulk, 403) is also recovered by SVA_scran (Fig. 5a). Similarly,
SVA_scran recovers majority of DE genes reported by other evalu-
ated methods (CorrConf_scran: 2654/3260; cate_scran:
7267/7843; dSVA_scran: 2892/3139, Fig. 5a). The recovery is even
higher when measured by the DE genes confirmed in the validation
set (pseudo_bulk: 378/378; CorrConf_scran: 2211/2320; cate_-
scran: 5533/5604; dSVA_scran: 2392/2430), suggesting that
SVA_scran is a good candidate to account for latent batch effects
in real data with potential label impurity.
Fig. 5. UpSet plot showing the intersections of DE genes among different methods. In
intersection. The bubbles below each bar with non-gray color indicate which sets are in t
least two different sets in the intersection. The columns of bars and bubbles are sorted
genes for each method and their intersections when using the third single-cell RNA-seq da
for each method and their intersections when using the bulk RNA-seq data used as the

Please cite this article as: W. Chen, S. Zhang, J. Williams et al., A comparison of
UMI count based single cell RNA sequencing, Computational and Structural Bi
A similar pattern was observed in the second evaluation, in
which we compared the detected DE genes (using all three batches
of scRNA-seq data) with the bulk RNA-seq derived DE genes
(Table 6 and Fig. 5b). As in the first evaluation, CorrConf_scran
and dSVA_scran recovered substantially fewer DE genes than did
cate_scran or SVA_scran. The R2 between the group label and the
estimated surrogate variables from CorrConf_scran and dSVA_s-
cran was 0.95 and 0.92, respectively, suggesting that their inferred
surrogate variables essentially captured the underlying group
information.
each UpSet plot, the bar height in the top panel indicates the size of a specific
he intersection. A line is drawn to connect those non-gray bubbles when there are at
by the number of sets in the intersection. a) UpSet plot showing the number of DE
ta set used as the validation data set; b) UpSet plot showing the number of DE genes
validation data set.
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Table 6
Comparison on real data with three batches, using bulk RNA-seq as the ground truth.
TPM � 1 is applied to single-cell results and FPKM � 1 is applied to the bulk RNA-seq
results, with FDR cutoffs of 0.05 and 0.1.

Methods DECount TPCount Precision Recall F1 Score

FDR in bulk < 0.05 (#DE genes in bulk: 3322)
batch_scran 10,606 2958 0.279 0.890 0.425
pseudo_bulk 1324 1042 0.787 0.314 0.449
CorrConf_scran 3079 1115 0.362 0.336 0.348
cate_scran 7056 2639 0.374 0.794 0.502
dSVA_scran 3130 1419 0.453 0.427 0.440
SVA_scran 10,344 2970 0.287 0.894 0.435
FDR in bulk < 0.1 (#DE genes in bulk: 4475)
batch_scran 10,606 3899 0.368 0.871 0.517
pseudo_bulk 1324 1093 0.826 0.244 0.377
CorrConf_scran 3079 1361 0.442 0.304 0.360
cate_scran 7056 3299 0.468 0.737 0.572
dSVA_scran 3130 1711 0.547 0.382 0.450
SVA_scran 10,344 3928 0.380 0.878 0.530
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Bulk RNA-seq detected substantially fewer DE genes (3322)
when compared to scRNA-seq (10,606 DE genes detected), suggest-
ing that scRNA-seq-based analysis is more sensitive for revealing
DE genes, probably as a result of its capture of the variation infor-
mation within each batch (which consists of thousands of values
for each batch in scRNA-seq, as compared to a single value in bulk
RNA-seq). Many potentially true DE genes revealed in scRNA-seq-
based analysis failed to reach statistical significance in the bulk
RNA-seq data analysis, analogous to the power loss of the aggrega-
tion method (pseudo_bulk) in the simulation results. Conse-
quently, the precision with which DE genes were detected by
single-cell based methods, based on comparisons to the DE genes
derived from independent single-cell data, was much higher than
the precision obtained when using RNA-seq data. This is consistent
with the pattern shown in Table 6. When the FDR cutoff was
relaxed to 0.1 for the bulk RNA-seq result, the recall of batch_scran
and SVA_scran decreased by only approximately 2%. However,
both the precision and the F1 score increased substantially (by
�10% and 0.09, respectively), which means that most of the genes
with FDRs between 0.05 and 0.1 in the bulk results achieved FDRs
of <0.05 with batch_scran and SVA_scran.

4. Discussion

We evaluated eleven methods which are either widely used or
recently developed to account for the batch effects with various
parameter configurations in scRNA-seq DE analysis. In general,
For unobserved batch variables, when they can be approximated
by analyzing the full gene-cell matrix (e.g., large sample size with
small group effects), surrogate variable based approaches outper-
formed single gene based methods, such as aggregation methods
and mixed effects models [9,24]. However, simulation results also
indicated that the current surrogate variable based methods have
not been properly designed/optimized for scRNA-seq data (e.g.,
CorrConf_k20_scran can show both inflated FDR and reduced
power). Furthermore, when there are impurities in the group
labels, as is expected in many real applications, methods such as
CorrConf, cate, and dSVA might (inadvertently) extract the true
underlying group information in the surrogate batch variables. This
will substantially reduce the power of detecting biologically mean-
ingful DE genes, which represents a major concern for these meth-
ods. Conversely, one of the surrogate viable methods, SVA, is
apparently insensitive to this potential problem, probably because
it first attempts to identify a list of genes that are unlikely to be
affected by the group difference and assigns greater weight to
them in later estimations. However, similar to other surrogate vari-
able methods, SVA still exhibits slight FDR inflation (especially
Please cite this article as: W. Chen, S. Zhang, J. Williams et al., A comparison of
UMI count based single cell RNA sequencing, Computational and Structural Bi
with large group effects). If this slight FDR inflation (e.g., up to
0.2) is tolerable, we recommend SVA for correcting either known
or latent batches, (with ‘‘pseudo-cell” aggregation for large number
of cells). Overall, there is no single method that can strictly control
the FDR and achieve close to the optimal power of DE gene detec-
tion in all simulated scenarios. It is, therefore, necessary to develop
new methods, especially ones tailored to the specific features of
scRNA-seq data, such as the large sample size, abundance of zeros,
and low count values.

We showed that scRNA-seq based imputation is not necessary
and often results in suboptimal performance compared to methods
that model the discrete counts using the negative binomial distri-
bution. Imputation techniques might be useful for clustering/visu-
alization because these methods, e.g., k-means clustering or
Gaussian mixture models, assume data follows a continuous distri-
bution, imputation might help in transforming the data towards a
more continuous fashion especially in the log scale, which might
benefit the methods for downstream visualization/clustering.

Based on our evaluation, the aggregation approach to form
‘‘pseudo-cells” from a small number of cells, e.g., 20, seems to be
very useful both for reducing the computational speed as well as
maintaining/improving the performance of several surrogate vari-
able based methods. One typical example is SVA. It is likely that the
distribution of the log scaled counts can be better modeled as
Gaussian distributions after count aggregation, which are the pri-
mary assumption employed by all surrogate variable based
methods.

Although we focused on DE analysis of two groups in the cur-
rent evaluation, these methods can be applied for testing equal
expressions among multiple groups or for testing other interesting
contrasts within the generalized linear (mixed) model framework.
For example, once the batch information is estimated, these esti-
mated batch variables can be used as known covariates in the
design matrix to adjust for the latent batch effects.

In our comparison, we did not request cells to be derived from a
single cell type; therefore, the interpretation of the DE analysis
depends on the comparison configuration. For example, a typical
scRNA-seq analysis may include cell-type heterogeneity in both
groups, which inevitably complicates the DE analysis because both
the changes in cell-type proportion and the expression change
within a specific subpopulation will generate the DE genes. To per-
form DE analysis in a specific cell type, we may first perform clus-
tering analysis to identify distinct cell subpopulations by using a
clustering method optimized for scRNA-seq data [34], followed
by cell-type identification using known marker genes, and we per-
form DE analysis in the desired cell types while adjusting for the
batch effects. We advise caution with respect to identifying the cell
types properly so that they are biologically meaningful and compa-
rable across different batches. When combining clustering with DE
analysis, we must be cautious to avoid the ‘‘data snooping” or
selection bias which results in false P values [35].

Finally, in the current study, we evaluated the batch correction
in only UMI count based scRNA-seq data. Although we expect that
read count based scRNA-seq data might show similar patterns
(after accounting for zero inflation), additional evaluations are
needed.
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